Phosphoinositide 3-kinase-dependent antagonism in mammalian olfactory receptor neurons.
نویسندگان
چکیده
Phosphoinositide signaling, in particular, phosphoinositide 3-kinase (PI3K) signaling, has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand this phenomenon we investigated PI3K-dependent inhibition between single odorant pairs. The concentration-dependent inhibition of the response of native rat ORNs to octanol by citral is PI3K dependent; blocking PI3K activity with the β and γ isoform-specific inhibitors AS252424 (5-[5-(4-fluoro-2-hydroxy-phenyl)-furan-2-ylmethylene]-thiazolidine-2,4-dione) and TGX221(7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido [1,2-a]pyrimidin-4-one) eliminated or strongly reduced the inhibition. Interestingly, blocking PI3K also changed the apparent agonist strength of the otherwise noncompetitive antagonist citral. The excitation evoked by citral after blocking PI3K, could be suppressed by the adenylate cyclase III (ACIII) blockers MDL12330A (cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride) and SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine], indicating that citral could also activate ACIII, presumably through the canonical olfactory receptor (OR). The G-protein G(β)γ subunit blockers suramin (8,8'-[carbonylbis[imino-3,1-phenylen ecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalenetrisulfonic acid), gallein (3',4',5',6'-tetrahydroxyspiro[isobenzofuran-1(3H),9'-(9H)xanthen]-3-one), and M119 (cyclohexanecarboxylic acid [2-(4,5,6-trihydroxy-3-oxo-3H-xanthen-9-yl)-(9CI)]) suppressed citral's inhibition of the response to octanol, indicating that the activation of PI3K by citral was G-protein dependent, consistent with the idea that inhibition acts via the canonical OR. Lilial similarly antagonized the response to isoamyl acetate in other ORNs, indicating the effect generalizes to at least one other odorant pair. The ability of methyl-isoeugenol, limonene, α-pinene, isovaleric acid, and isosafrole to inhibit the response of other ORNs to IBMX (3-isobutyl-1-methylxanthine)/forskolin in a PI3K-dependent manner argues the effect generalizes to yet other structurally dissimilar odorants. Our findings collectively raise the interesting possibility that the OR serves as a molecular logic gate when mammalian ORNs are activated by natural, complex mixtures containing both excitatory and inhibitory odorants.
منابع مشابه
Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons
Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signa...
متن کاملPhosphoinositide 3-Kinase Dependent Inhibition as a Broad Basis for Opponent Coding in Mammalian Olfactory Receptor Neurons
Phosphoinositide 3-kinase (PI3K) signaling has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand the breadth of such inhibition in odor coding, we screened a panel of odorants representing different chemical classes, as well as odorants known to occur in a natural odor object (tomato), for their ability to rapidly activate...
متن کاملInhibitory odorant signaling in Mammalian olfactory receptor neurons.
Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction ...
متن کامل3-Phosphoinositides Modulate Cyclic Nucleotide Signaling in Olfactory Receptor Neurons
Phosphatidylinositol 3-kinase (PI3K)-dependent phosphoinositide signaling has been implicated in diverse cellular systems coupled to receptors for many different ligands, but the extent to which it functions in sensory transduction is yet to be determined. We now report that blocking PI3K activity increases odorant-evoked, cyclic nucleotide-dependent elevation of [Ca(2+)](i) in acutely dissocia...
متن کامل1 Inhibitory odorant signaling in mammalian olfactory receptor neurons 2 3
18 Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many 19 species of animals. Cyclic nucleotide-dependent activation of canonical mammalian 20 ORNs is well established but it is still unclear how odorants inhibit these cells. Here we 21 further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI 22 signaling in many cellular processes, in olfactor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2011